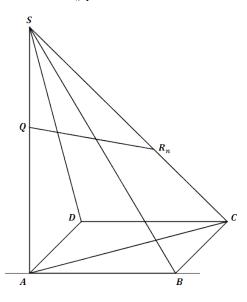
Mittlere-Reife-Prüfung 2006 Mathematik I Aufgabe P2

Aufgabe P2.

Das Quadrat ABCD mit $\overline{AB} = 6\,\mathrm{cm}$ ist die Grundfläche einer Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Eckpunkt A. Der Winkel SCA hat das Maß $\gamma = 50^{\circ}$.

Der Punkt Q liegt auf der Kante [AS] mit $\overline{AQ}=6\,\mathrm{cm}.$ Die Punkte R_n liegen auf der Kante [CS], wobei die Winkel $R_n QS$ das Maß ε mit $\varepsilon > 0^\circ$ haben.



Aufgabe P2.1 (3 Punkte)

Berechnen Sie das größtmögliche Winkelmaß ε .

Aufgabe P2.2 (4 Punkte)

Zeigen Sie, dass für die Streckenlängen $\overline{QR_n}$ in Abhängigkeit von ε gilt: $\overline{QR_n}(\varepsilon)=\frac{2,64}{\sin(40^\circ+\varepsilon)}$ cm.

$$\overline{QR_n}(\varepsilon) = \frac{2,64}{\sin(40^\circ + \varepsilon)} \text{ cm.}$$

[Teilergebnis: $\overline{AS} = 10, 11 \, \text{cm}$]

Aufgabe P2.3 (2 Punkte)

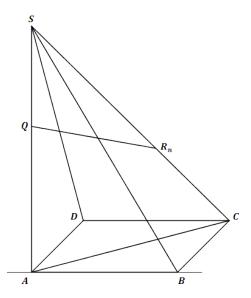
Berechnen Sie das Winkelmaß ε , sodass die Strecken $[QR_1]$ und [QS] gleich lang sind.

Lösung

Aufgabe P2.

Das Quadrat $A\,B\,C\,D$ mit $\overline{AB}=6\,\mathrm{cm}$ ist die Grundfläche einer Pyramide $A\,B\,C\,D\,S$. Die Spitze S liegt senkrecht über dem Eckpunkt A. Der Winkel $S\,C\,A$ hat das Maß $\gamma=50^\circ.$

Der Punkt Q liegt auf der Kante [AS] mit $\overline{AQ}=6$ cm. Die Punkte R_n liegen auf der Kante [CS], wobei die Winkel $R_n QS$ das Maß ε mit $\varepsilon>0^\circ$ haben.



Aufgabe P2.1 (3 Punkte)

Berechnen Sie das größtmögliche Winkelmaß $\varepsilon.$

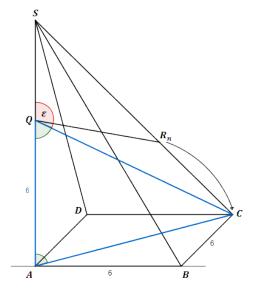
Lösung zu Aufgabe P2.1

$Winkel\ bestimmen$

Gegeben:

$$\overline{AB} = \overline{BC} = 6 \,\mathrm{cm}, \quad \overline{AQ} = 6 \,\mathrm{cm}$$

Der Winkel ε wird dann am größten, wenn der Punkt R_n auf C liegt.



Nun betrachtet man das rechtwinklige Dreieck ACQ. Der Winkel AQC ist Nebenwinkel des größtmöglichen Winkels ε .

Der Winkel $A\,Q\,C$ lässt sich in diesem Dreieck jedoch erst berechnen, wenn $\overline{A\,C}$ bekannt ist.

Erläuterung: Satz des Pythagoras

In jedem rechtwinkligen Dreieck mit den Katheten a und b und der Hypotenuse c gilt: $a^2+b^2=c^2$

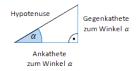
Die Strecken [AB] und [BC] sind hier die Katheten, [AC] ist die Hypothenuse.

$$\overline{AC}^2 = \overline{AB}^2 + \overline{BC}^2$$

$$\overline{AC}^2 = 6^2 + 6^2 = 72$$
 | $\sqrt{}$

 $\Rightarrow \overline{AC} = 6\sqrt{2} \text{ cm}$

Erläuterung: Tangens eines Winkels



Der Tangens eines Winkels α ist ein Seitenverhältnis.

$$\tan \alpha = \frac{\text{Gegenkathete zu } \alpha}{\text{Ankathete zu } \alpha}$$

Gilt nur in rechtwinkligen Dreiecken.

$$\tan \angle A\,Q\,C = \frac{\overline{A\,C}}{\overline{A\,Q}} = \frac{6\sqrt{2}}{6} = \sqrt{2} \qquad | \qquad \tan^{-1}$$

 $\angle AQC \approx 54,74^{\circ}$

$$\Rightarrow \quad \varepsilon = 180^{\circ} - 54.74^{\circ} = 125.26^{\circ}$$

Aufgabe P2.2 (4 Punkte)

Zeigen Sie, dass für die Streckenlängen $\overline{QR_n}$ in Abhängigkeit von ε gilt: $\overline{QR_n}(\varepsilon)=\frac{2,64}{\sin(40^\circ+\varepsilon)}$ cm.

$$\overline{QR_n}(\varepsilon) = \frac{2,64}{\sin(40^\circ + \varepsilon)} \text{ cm}$$

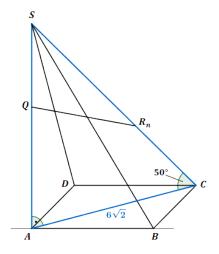
[Teilergebnis: $\overline{AS} = 10, 11 \text{ cm}$]

Lösung zu Aufgabe P2.2

Länge einer Strecke

Gegeben: $\angle SCA = \gamma = 50^{\circ}$, $\overline{AC} = 6\sqrt{2}$ cm (aus Teilaufgabe 2.1)

Man betrachtet das rechtwinklige Dreieck ACS.



Hier kann \overline{AS} berechnet werden.

Erläuterung: Tangens eines Winkels

Der Tangens eines Winkels α ist ein Seitenverhältnis. Gegenkathete zu α

$$\tan \alpha = \frac{\text{Gegenkathete zu } \alpha}{\text{Ankathete zu } \alpha}$$

Gilt nur in rechtwinkligen Dreiecken.

$$\tan \gamma = \frac{\overline{AS}}{\overline{AC}} \quad | \quad \cdot \overline{AC}$$

$$\overline{AS} = \overline{AC} \cdot \tan \gamma$$

$$\overline{AS} = 6\sqrt{2} \cdot \tan 50^{\circ}$$

 $\Rightarrow \overline{AS} \approx 10,11 \,\mathrm{cm}$

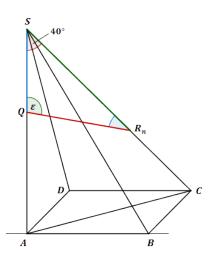
Außerdem kann im Dreieck ACS der Winkel ASC berechnet werden.

Erläuterung: Winkelsumme im Dreieck

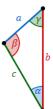
Die Summe der Innenwinkel eines beliebigen Dreiecks ist immer gleich 180°.

$$\angle ASC = 180^{\circ} - 90^{\circ} - 50^{\circ} = 40^{\circ}$$

Da $\overline{QR_n}$ berechnet werden soll, wird im Dreieck SQR_n der Sinussatz verwendet.



Erläuterung: Sinussatz



In jedem Dreieck haben die Quotienten aus der Länge einer Seite und dem Sinuswert ihres Gegenwinkels denselben Wert. Es gilt:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

Anders formuliert:

$$\frac{a}{b} = \frac{\sin \alpha}{\sin \beta} \qquad \frac{a}{c} = \frac{\sin \alpha}{\sin \gamma} \qquad \frac{b}{c} = \frac{\sin \beta}{\sin \gamma}$$

$$\frac{\overline{QR_n}}{\sin \angle ASC} = \frac{\overline{QS}}{\sin \angle SR_nQ}$$

$$\frac{\overline{QR_n}}{\sin 40^\circ} = \frac{\overline{QS}}{\sin(180^\circ - (\varepsilon + 40^\circ))} \quad | \quad \cdot \sin 40$$

Erläuterung: Sinus eines Winkels

$$\sin x = \sin(180^{\circ} - x)$$

$$\overline{QR_n} = \frac{\sin 40^\circ \cdot 4,11}{\sin(\varepsilon + 40^\circ)} \qquad (\overline{QS} = \overline{AS} - \overline{AQ} = 10,11 - 6 = 4,11)$$

$$\Rightarrow \overline{QR_n}(\varepsilon) = \frac{2,64}{\sin(40^\circ + \varepsilon)} \text{ cm}$$

Aufgabe P2.3 (2 Punkte)

Berechnen Sie das Winkelmaß ε , sodass die Strecken $[QR_1]$ und [QS] gleich lang sind.

Lösung zu Aufgabe P2.3

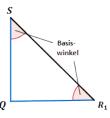
$Winkel\ bestimmen$

Gegeben aus Aufgabe 2.2: $\angle ASC = \angle QSR_1 = 40^{\circ}$

Wenn $[Q\,R_1]$ und $[Q\,S]$ gleich lang sind, so sind diese Strecken die Schenkel des gleichschenkligen Dreiecks $Q\,R_1\,S.$

Erläuterung: Gleichschenkliges Dreieck

In einem gleichschenkligen Dreieck sind die beiden Basiswinkel gleich groß.



Somit gilt: $\angle Q S R_1 = \angle S R_1 Q = 40^{\circ}$

Erläuterung:

Die Summe der Innenwinkel eines beliebigen Dreiecks ist immer gleich 180°.

 \Rightarrow $\varepsilon = 180^{\circ} - 2 \cdot 40^{\circ} = 100^{\circ}$