Die Spitze E_0 der Pyramide $ABCDE_0$ liegt senkrecht über dem Punkt A.

Mittlere-Reife-Prüfung 2008 Mathematik I Aufgabe B2

Aufgabe B2.

Die Raute ABCD mit den Diagonalen [AC] und [BD] ist die Grundfläche einer Pyramide ABCDS, deren Spitze S senkrecht über dem Diagonalenschnittpunkt M der Raute ABCD liegt.

Es gilt: $\overline{AC} = 14$ cm; $\overline{BD} = 10$ cm; $\overline{MS} = 5$ cm.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

Aufgabe B2.1 (2 Punkte)

Zeichnen Sie das Schrägbild der Pyramide $A\,B\,C\,D\,S$, wobei die Diagonale $[A\,C]$ auf der Schrägbildachse liegen soll.

Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$.

Aufgabe B2.2 (3 Punkte)

Auf der geradlinigen Verlängerung der Kante $[C\ S]$ über den Punkt S hinaus liegen Punkte E_n . Die Punkte E_n sind die Spitzen von Pyramiden $A\ B\ C\ D\ E_n$ mit den Höhen $[E_n\ F_n]$, deren Fußpunkte F_n auf der Halbgeraden $[M\ A]$ liegen. Die Strecken $[M\ S]$ und $[M\ E_n]$ schließen Winkel $S\ M\ E_n$ mit dem Maß φ ein.

Zeichnen Sie die Pyramide $ABCDE_1$ für $\varphi=30^\circ$ und ihre Höhe $[E_1F_1]$ in das Schrägbild zu 2.1 ein.

Für alle Pyramiden $ABCDE_n$ gilt: $\varphi \in]0^\circ; 54, 46^\circ[$.

Begründen Sie die obere Intervallgrenze.

Aufgabe B2.3 (3 Punkte)

Zeigen Sie durch Rechnung, dass für die Länge der Strecken $[M\,E_n]$ in Abhängigkeit von φ gilt:

$$\frac{\varphi}{M E_n}(\varphi) = \frac{4,07}{\sin(125,54^\circ + \varphi)} \text{ cm.}$$

Aufgabe B2.4 (3 Punkte)

Ermitteln Sie rechnerisch das Volumen V der Pyramiden $ABCDE_n$ in Abhängigkeit von $\varphi.$

[Ergebnis:
$$V(\varphi) = \frac{94,97 \cdot \cos \varphi}{\sin (125,54^{\circ} + \varphi)} \text{ cm}^3$$
]

Aufgabe B2.5 (3 Punkte)

Die Pyramide $ABCDE_2$ hat das Volumen 210 cm³.

Berechnen Sie das zugehörige Winkelmaß φ .

http://www.realschulrep.de/

Aufgabe B2.6 (3 Punkte)

Berechnen Sie das Maß φ des Winkels SME_0 .

Lösung

Aufgabe B2.

Die Raute ABCD mit den Diagonalen [AC] und [BD] ist die Grundfläche einer Pyramide ABCDS, deren Spitze S senkrecht über dem Diagonalenschnittpunkt M der Raute ABCD liegt.

Es gilt:
$$\overline{AC} = 14$$
 cm; $\overline{BD} = 10$ cm; $\overline{MS} = 5$ cm.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

Aufgabe B2.1 (2 Punkte)

Zeichnen Sie das Schrägbild der Pyramide $A\,B\,C\,D\,S$, wobei die Diagonale $[A\,C]$ auf der Schrägbildachse liegen soll.

Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$.

Lösung zu Aufgabe B2.1

Skizze

$$\overline{AC} = 14 \text{ cm}$$
; $\overline{BD} = 10 \text{ cm}$; $\overline{MS} = 5 \text{ cm}$

 $q=\frac{1}{2}$ ist der Faktor für die Diagonale $[B\,D]$ im Schrägbild.

Für die Länge der Diagonale im Schrägbild gilt somit:

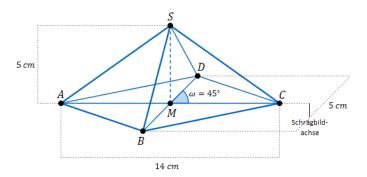
$$\overline{B}\overline{D} = 10 \text{ cm} \quad \Rightarrow \quad \overline{B}\overline{D} \cdot q = 10 \cdot \frac{1}{2} = 5 \text{ cm}$$

Winkel der Diagonale zur Schrägbildachse ist $\omega = 45^{\circ}$.

Erläuterung: Eigenschaften einer Raute

Die Grundfläche ABCD der Pyramide ist eine Raute.

Da sich sich die Diagonalen einer Raute halbieren, muss der Mittelpunkt M der Strecke $[A\,C]$ ermittelt werden, bevor die Strecke $[B\,D]$ eingezeichnet werden kann.



Aufgabe B2.2 (3 Punkte)

Auf der geradlinigen Verlängerung der Kante [CS] über den Punkt S hinaus liegen Punkte E_n . Die Punkte E_n sind die Spitzen von Pyramiden $ABCDE_n$ mit den Höhen $[E_nF_n]$, deren Fußpunkte F_n auf der Halbgeraden [MA] liegen. Die Strecken [MS] und $[ME_n]$ schließen Winkel SME_n mit dem Maß φ ein.

Zeichnen Sie die Pyramide $ABCDE_1$ für $\varphi=30^\circ$ und ihre Höhe $[E_1F_1]$ in das Schrägbild zu 2.1 ein.

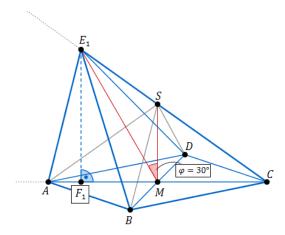
Für alle Pyramiden $ABCDE_n$ gilt: $\varphi \in]0^\circ; 54, 46^\circ[$.

Begründen Sie die obere Intervallgrenze.

Lösung zu Aufgabe B2.2

Skizze

 $ABCDE_1$ für $\varphi = 30^\circ$:

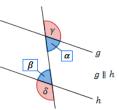


$Winkel\ bestimmen$

Überlegung:

Wenn $[M E_n]$ parallel zu [C S] wäre, dann würde es keine Pyramide $A B C D E_n$ geben.

Erläuterung: Wechselwinkel / Z-Winkel

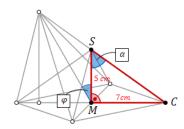


Werden zwei parallele Geraden g und h von einer dritten Geraden geschnitten, so gelten für die Wechselwinkel folgende Beziehungen:

$$\alpha = \beta$$
 und $\gamma = \delta$

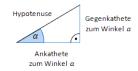
Wenn $[M\,E_n]$ parallel zu $[C\,S]$ wäre, dann würden die Wechselwinkel φ und $\underbrace{ \angle M\,S\,C}$ gleich sein.

Das ist der Fall wenn $\varphi = \underbrace{\angle MSC}_{\alpha}$.



Im rechtwinkligen Dreieck SMC gilt:

Erläuterung: Tangens eines Winkels



Der Tangens eines Winkels α ist ein Seitenverhältnis. Gegenkathete zu α

$$\tan \alpha = \frac{\text{Gegenkathete zu } \alpha}{\text{Ankathete zu } \alpha}$$

Gilt nur in rechtwinkligen Dreiecken.

$$\tan\alpha = \frac{\overline{M\,C}}{\overline{M\,S}} = \frac{7}{5}$$

Erläuterung: Winkel berechnen

Um den Winkel α aus $\tan\alpha=\frac{7}{5}$ zu bestimmen, wird im Taschenrechner (TR) folgendes eingegeben:

TR:
$$\frac{7}{5}$$
 \rightarrow SHIFT \rightarrow tan

$$\Rightarrow \quad \alpha = \tan^{-1}\left(\frac{7}{5}\right) \approx 54,46^{\circ}$$

$$\Rightarrow \qquad \varphi =]0; \alpha [=]0; 54, 46^{\circ}[$$

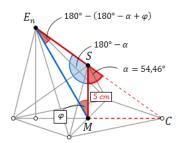
Aufgabe B2.3 (3 Punkte)

Zeigen Sie durch Rechnung, dass für die Länge der Strecken $[M E_n]$ in Abhängigkeit von

$$\overline{ME_n}(\varphi) = \frac{4,07}{\sin(125,54^\circ + \varphi)}$$
 cm.

Lösung zu Aufgabe B2.3

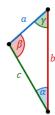
Seite eines Dreiecks bestimmen



Betrachtet wird das Dreieck $E_n M S$.

Nach dem Sinussatz gilt:

Erläuterung: Sinussatz



In jedem Dreieck haben die Quotienten aus der Länge einer Seite und dem Sinuswert ihres Gegenwinkels denselben Wert. Es gilt:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

Anders formuliert:

$$\frac{a}{b} = \frac{\sin\alpha}{\sin\beta} \qquad \frac{a}{c} = \frac{\sin\alpha}{\sin\gamma} \qquad \frac{b}{c} = \frac{\sin\beta}{\sin\gamma}$$

Im Dreieck $E_n M S$ gilt somit: $\frac{\overline{M E_n}}{\overline{M S}} = \frac{\sin \angle E_n S M}{\sin \angle M E_n S}$

$$\frac{\overline{M E_n}}{\overline{M S}} = \frac{\sin \angle E_n S M}{\sin \angle M E_n S}$$

Erläuterung: Winkelsumme im Dreieck

Die Summe der Innenwinkel eines beliebigen Dreiecks ist immer gleich 180°.

Im Dreieck $E_n M S$ gilt somit: $\angle M E_n S + \angle E_n S M + \varphi = 180^\circ$

$$\frac{\overline{ME_n}}{5} = \frac{\sin(180^\circ - \alpha)}{\sin(180^\circ - (180^\circ - \alpha + \varphi))}$$

$$\frac{\overline{ME_n}}{5} = \frac{\sin(125, 54^\circ)}{\sin(180^\circ - (125, 54^\circ + \varphi))}$$

Erläuterung: Funktionswerte der Sinusfunktion

	90°± α	180 ° ± α	270° ± α	360° ± α
sin	cosα	$\mp \sin \alpha$	$-\cos \alpha$	$\pm \sin \alpha$
cos	∓sin α	$-\cos \alpha$	$\pm \sin \alpha$	cosα

Hier:
$$\sin(180^{\circ} - \underbrace{(125, 54^{\circ} + \varphi)}_{0}) = \sin(125, 54^{\circ} + \varphi)$$

$$\begin{split} & \frac{\overline{ME_n}}{5} = \frac{\sin{(125,54^\circ)}}{\sin{(125,54^\circ + \varphi)}} & | & \cdot 5 \\ & \overline{ME_n} = \frac{5 \cdot \sin{(125,54^\circ)}}{\sin{(125,54^\circ + \varphi)}} \\ & \Rightarrow & \overline{ME_n}(\varphi) \approx \frac{4,07}{\sin{(125,54^\circ + \varphi)}} \text{ cm} \end{split}$$

Aufgabe B2.4 (3 Punkte)

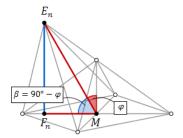
Ermitteln Sie rechnerisch das Volumen V der Pyramiden $A \, B \, C \, D \, E_n$ in Abhängigkeit von φ .

[Ergebnis:
$$V(\varphi) = \frac{94,97 \cdot \cos \varphi}{\sin (125,54^{\circ} + \varphi)} \text{ cm}^{3}$$
]

Lösung zu Aufgabe B2.4

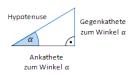
Seite eines Dreiecks bestimmen

Nebenrechnung: Höhe $[E_n F_n]$ der Pyramide bestimmen



Betrachtet wird das rechtwinklige Dreieck $F_n M E_n$.

Erläuterung: Sinus eines Winkels



Der Sinus eines Winkels α ist ein Seitenverhältnis.

$$\sin \alpha = \frac{\text{Gegenkathete zu }\alpha}{\text{Hypotenuse}}$$

Gilt nur in rechtwinkligen Dreiecken.

$$\sin \underbrace{\angle E_n M F_n}_{\beta} = \frac{\overline{E_n F_n}}{\overline{M E_n}} \qquad | \qquad \overline{M E_n}$$

http://www.realschulrep.de/

Seite 12

 $\overline{E_n \, F_n} = \overline{M \, E_n} \cdot \sin \beta$

$$\overline{E_n F_n} = \overline{M E_n} \cdot \sin(90^\circ - \varphi)$$

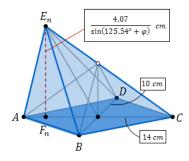
Erläuterung: Funktionswerte der Sinusfunktion

	90° ± α	180° ± α	270° ± α	360° ± α
sin	cosα	∓ sin α	- cos α	$\pm \sin \alpha$
cos	∓sin α	$-\cos \alpha$	$\pm \sin \alpha$	cosα

$$\Rightarrow \sin(90^{\circ} - \varphi) = \cos(\varphi)$$

$$\overline{E_n F_n} = \overline{M E_n} \cdot \cos(\varphi)$$

Volumen einer Pyramide



Volumen der Pyramide $ABCDE_n$:

Erläuterung: Volumen einer Pyramide

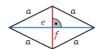
Eine Pyramide mit Grundfläche G und Höhe h hat ein Volumen von:

$$V = \frac{1}{3} \cdot G \cdot h$$

$$V_{ABCDE_n} = \frac{1}{3} \cdot G \cdot h$$

Erläuterung: Flächeninhalt einer Raute

Die Grundfläche ABCD ist eine Raute.



Eine Raute mit Diagonalen e und f hat einen Flächeninhalt von:

$$A = \frac{1}{2} \cdot e \cdot f$$

$$V_{ABCDE_n} = \frac{1}{3} \cdot \underbrace{\frac{1}{2} \cdot \overline{AC} \cdot \overline{BD}}_{G} \cdot \underbrace{\overline{E_n F_n}}_{h}$$

$$V_{ABCDE_n} = \frac{1}{3} \cdot \underbrace{\frac{1}{2} \cdot \overline{AC} \cdot \overline{BD}}_{G} \cdot \underbrace{\overline{ME_n} \cdot \cos(\varphi)}_{h}$$

 $V_{ABCDE_n} = \frac{1}{3} \cdot \frac{1}{2} \cdot 14 \cdot 10 \cdot \frac{4,07}{\sin(125,54^{\circ} + \varphi)} \cdot \cos \varphi$

$$\Rightarrow V_{ABCDE_n} \approx \frac{94,97 \cdot \cos \varphi}{\sin(125,54^{\circ} + \varphi)} \text{ cm}^3$$

Aufgabe B2.5 (3 Punkte)

Die Pyramide $ABCDE_2$ hat das Volumen 210 cm³. Berechnen Sie das zugehörige Winkelmaß φ .

Lösung zu Aufgabe B2.5

$Winkel\ bestimmen$

Aus Teilaufgabe 2.4:
$$V_{ABCDE_n} \approx \frac{94,97 \cdot \cos \varphi}{\sin(125.54^\circ) + \varphi} \text{ cm}^3$$

Für die Pyramide $ABCDE_2$ gilt somit:

$$\frac{94,97\cdot\cos\varphi}{\sin(125,54^\circ+\varphi)}=210 \qquad |\qquad \cdot \sin(125,54^\circ+\varphi)$$

 $94,97 \cdot \cos \varphi = 210 \cdot \sin(125,54^{\circ} + \varphi)$ Additions theorem anwenden

Erläuterung: Additionstheorem

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \sin\beta \cos\alpha$$

$$94,97 \cdot \cos \varphi = 210 \cdot \left[\sin(125,54^{\circ}) \cdot \cos \varphi + \sin \varphi \cdot \cos(125,54^{\circ}) \right]$$

Erläuterung: Ausmultiplizieren

Die rechte Seite der Gleichung wird ausmultipliziert.

$$94,97 \cdot \cos \varphi = 210 \cdot \sin(125,54^{\circ}) \cdot \cos \varphi + 210 \cdot \sin \varphi \cdot \cos(125,54^{\circ})$$

Erläuterung: Rechenweg

Der Term $210 \cdot \sin(125, 54^{\circ}) \cdot \cos \varphi$ wird auf die linke Seite der Gleichung gebracht.

$$94,97 \cdot \cos \varphi - 210 \cdot \sin(125,54^{\circ}) \cdot \cos \varphi = 210 \cdot \sin \varphi \cdot \cos(125,54^{\circ})$$

Erläuterung: Ausklammern

Der gemeinsame Term $\cos \varphi$ auf der linken Seite der Gleichung wird ausgeklammert.

$$[94, 97 - 210 \cdot \sin(125, 54^{\circ})] \cdot \cos \varphi = 210 \cdot \sin \varphi \cdot \cos(125, 54^{\circ}) \qquad | \qquad \underbrace{(\cos \varphi)}_{\neq 0}$$

Erläuterung: Teilen

Für den Winkel φ gilt: $\varphi \in]0^{\circ}; 54, 56^{\circ}[$ (siehe Teilaufgabe 2.3)

Somit ist $\cos \varphi \neq 0$ und die Gleichung darf durch $\cos \varphi$ geteilt werden.

$$94,97 - 210 \cdot \sin(125,54^{\circ}) = 210 \cdot \cos(125,54^{\circ}) \cdot \underbrace{\frac{\sin \varphi}{\cos \varphi}}_{\text{tan}/\varphi} \qquad | \qquad : \underbrace{(210 \cdot \cos(125,54^{\circ}))}_{\neq 0}$$

Erläuterung: Tangens eines Winkels

Für den Tangens eines Winkels α gilt die Beziehung:

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\tan\varphi = \frac{94,97 - 210 \cdot \sin(125,54^\circ)}{210 \cdot \cos(125,54^\circ)}$$

Erläuterung: Winkel berechnen

Um den Winkel φ aus $\tan \varphi = \frac{94,97-210\cdot\sin(125,54^\circ)}{210\cdot\cos(125,54^\circ)}$ zu bestimmen, wird im Taschenrechner (TR) folgendes eingegeben:

$$\text{TR:} \quad \frac{94,97-210\cdot\sin(125,54^\circ)}{210\cdot\cos(125,54^\circ)} \quad \rightarrow \quad \text{SHIFT} \quad \rightarrow \quad \tan$$

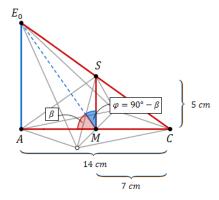
$$\Rightarrow \qquad \varphi = \tan^{-1} \left(\frac{94,97 - 210 \cdot \sin(125,54^\circ)}{210 \cdot \cos(125,54^\circ)} \right) \approx 31,88^\circ$$

Aufgabe B2.6 (3 Punkte)

Die Spitze E_0 der Pyramide $A\,B\,C\,D\,E_0$ liegt senkrecht über dem Punkt A. Berechnen Sie das Maß $\,\varphi\,$ des Winkels $\,S\,M\,E_0$.

Lösung zu Aufgabe B2.6

Seite eines Dreiecks bestimmen

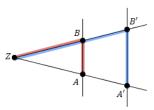


Betrachtet werden die Dreiecke $E_0 A C$ und S M C.

Laut Vierstreckensatz gilt:

Erläuterung: Vierstreckensatz

Wird ein Strahl von zwei parallelen Geraden geschnitten, dann gilt zwischen den Strecken z.B. folgende Beziehung:



$$\frac{\overline{Z}\,\overline{B}}{\overline{Z}\,B'} = \frac{\overline{A}\,\overline{B}}{\overline{A'}\,B'}$$

$$\begin{split} & \frac{\overline{C\,M}}{\overline{C\,A}} = \frac{\overline{S\,M}}{\overline{A\,E_0}} \\ & \frac{7}{14} = \frac{5}{\overline{A\,E_0}} \quad | \quad \cdot \left(\overline{A\,E_0} \cdot \frac{14}{7} \right) \end{split}$$

$$\Rightarrow \quad \overline{AE_0} = \frac{14 \cdot 5}{7} = 10 \text{ cm}$$

$Winkel\ bestimmen$

Im rechtwinkligen Dreieck $E_0 A M$ gilt:

Erläuterung: Tangens eines Winkels

Der Tangens eines Winkels α ist ein Seitenverhältnis. $\tan\alpha = \frac{\text{Gegenkathete zu }\alpha}{\text{Ankathete zu }\alpha}$

$$\tan \alpha = \frac{\text{Gegenkathete zu } \alpha}{\text{Ankathete zu } \alpha}$$

Gilt nur in rechtwinkligen Dreiecken.

$$\tan \beta = \frac{\overline{A \, E_0}}{\overline{A \, M}} = \frac{10}{7}$$

Erläuterung: Winkel berechnen

Um den Winkel β aus $\tan\beta=\frac{10}{7}$ zu bestimmen, wird im Taschenrechner (TR) folgendes eingegeben:

TR:
$$\frac{10}{7}$$
 \rightarrow SHIFT \rightarrow tan

$$\beta = \tan^{-1} \left(\frac{10}{7}\right) \approx 55,01^{\circ}$$

$$\varphi = 90^{\circ} - \beta$$

$$\Rightarrow \qquad \varphi = 90^{\circ} - 55,01^{\circ} = 34,99^{\circ}$$