Mittlere-Reife-Prüfung 2009 Mathematik I Aufgabe B1

Aufgabe B1.

Gegeben ist die Funktion f mit der Gleichung $y = \log_2(x+8) + 1$ mit $G = \mathbb{R} \times \mathbb{R}$.

Aufgabe B1.1 (2 Punkte)

Geben Sie die Definitionsmenge und die Wertemenge der Funktion $\,f\,$ sowie die Gleichung der Asymptote $\,h\,$ an.

Aufgabe B1.2 (3 Punkte)

Tabellarisieren Sie die Funktion f für $x \in \{-7,7;-7,6;-7;-6;-5;-4;-2;0;2;4\}$ auf zwei Stellen nach dem Komma gerundet.

Zeichnen Sie sodann den Graphen zu f in ein Koordinatensystem.

Für die Zeichnung: Längeneinheit 1 cm; $-9 \le x \le 6$; $-4 \le y \le 9$.

Aufgabe B1.3 (2 Punkte)

Punkte $A_n \left(x|\log_2(x+8)+1\right)$ auf dem Graphen zu f sind zusammen mit dem Punkt B(0|0) und Punkten C_n und D_n die Eckpunkte von Quadraten $A_n\, B\, C_n\, D_n$.

Zeichnen Sie die Quadrate $A_1\,B\,C_1\,D_1$ für x=-5 und $A_2\,B\,C_2\,D_2$ für x=1 in das Koordinatensystem zu 1.2 ein.

Aufgabe B1.4 (5 Punkte)

Die Punkte A_n können auf die Punkte C_n abgebildet werden.

Zeigen Sie durch Rechnung, dass der Trägergraph t der Punkte C_n die Gleichung $y = -2^{x-1} + 8$ besitzt.

Zeichnen Sie den Trägergraphen tder Punkte C_n in das Koordinatensystem zu 1.2 ein. [Teilergebnis: C_n (log $_2(x+8)+1|-x)$

Aufgabe B1.5 (2 Punkte)

Für das Quadrat $A_3 B C_3 D_3$ gilt: $A_3(-4|3)$.

Berechnen Sie die Koordinaten des Punktes D_3 .

Aufgabe B1.6 (3 Punkte)

Für das Quadrat $A_4\,B\,C_4\,D_4\,$ gilt: Der Punkt $\,D_4\,$ liegt auf der Winkelhalbierenden des II. Quadranten.

Ermitteln Sie rechnerisch die x-Koordinate des Punktes A_4 .

Lösung

Aufgabe B1.

Gegeben ist die Funktion f mit der Gleichung $y = \log_2(x+8) + 1$ mit $G = \mathbb{R} \times \mathbb{R}$.

Aufgabe B1.1 (2 Punkte)

Geben Sie die Definitionsmenge und die Wertemenge der Funktion $\,f\,$ sowie die Gleichung der Asymptote $\,h\,$ an.

Lösung zu Aufgabe B1.1

Definitionsmenge einer Funktion

$$f: y = \log_2(x+8) + 1$$

Erläuterung: Definitionsbereich der Logarithmusfunktion

Die Logarithmusfunktion $\log_2(x+8)$ ist nur für positive Werte definiert. Man untersucht somit für welche x-Werte gilt: x+8>0.

$$x + 8 > 0$$

$$x > -8$$

$$\Rightarrow D_f =]-8;\infty[$$

Wertemenge einer Funktion

f ist eine Logarithmusfunktion.

$$\Rightarrow W_f = \mathbb{R}$$

Asymptoten einer Funktion

$$D_f =]-8;\infty[$$

$$\Rightarrow$$
 $h: x = -8$ (senkrechte Asymptote)

Aufgabe B1.2 (3 Punkte)

Tabellarisieren Sie die Funktion f für $x \in \{-7, 7; -7, 6; -7; -6; -5; -4; -2; 0; 2; 4\}$ auf zwei Stellen nach dem Komma gerundet.

Zeichnen Sie sodann den Graphen zu $\,f\,$ in ein Koordinatensystem.

Für die Zeichnung: Längeneinheit 1 cm; $-9 \leqq x \leqq 6\,;\, -4 \leqq y \leqq 9\,.$

Lösung zu Aufgabe B1.2

Wertetabelle

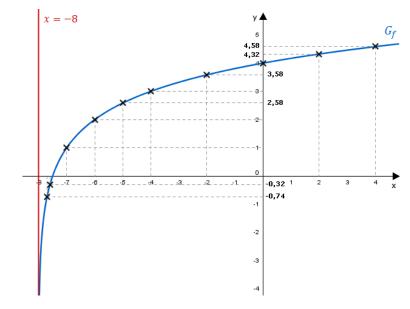
$$f: y = \log_2(x+8) + 1$$

Wertetabelle für $x \in \{-7, 7; -7, 6; -7; -6; -5; -4; -2; 0; 2; 4\}$ erstellen:

x	-7,7	-7,6	-7	-6	-5	-4	-2	0	2	4
$y = \log_2(x+8) + 1$	-0,74	-0,32	1	2	2,58	3	3,58	4	4,32	4,58

Skizze

Graph G_f der Funktion f:



Aufgabe B1.3 (2 Punkte)

Punkte A_n $(x|\log_2(x+8)+1)$ auf dem Graphen zu f sind zusammen mit dem Punkt B(0|0) und Punkten C_n und D_n die Eckpunkte von Quadraten $A_n B C_n D_n$. Zeichnen Sie die Quadrate $A_1 B C_1 D_1$ für x=-5 und $A_2 B C_2 D_2$ für x=1 in das Koordinatensystem zu 1.2 ein.

Lösung zu Aufgabe B1.3

Skizze

$$A_n(x|\log_2(x+8)+1)$$

Für
$$x = -5$$
 ist $A_1(-5|\log_2(3) + 1) = A_1(-5|2, 58)$

Für
$$x = 1$$
 ist $A_2(1|\log_2(9) + 1) = A_2(1|4,17)$

B(0|0)

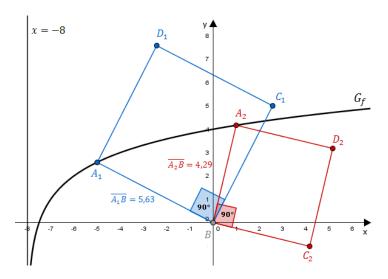
Quadrate $A_1 B C_1 D_1$ und $A_2 B C_2 D_2$ einzeichnen:

Erläuterung: Einzeichnen

Um das Quadrat $A_1 B C_1 D_1$ (und $A_2 B C_2 D_2$) einzuzeichnen, muss der Punkt A_1 mit dem Punkt B verbunden werden.

Mit dem Lineal wird die Strecke $\overline{A_1B}$ gemessen (ca. 5,63 cm). Der Punkt C_1 liegt dann 5,63 cm von B entfernt. Die Seite $[BC_1]$ liegt senkrecht zu $[A_B]$.

Punkte werden entgegen dem Uhrzeigersinn eingezeichnet.



Aufgabe B1.4 (5 Punkte)

Die Punkte A_n können auf die Punkte C_n abgebildet werden.

Zeigen Sie durch Rechnung, dass der Trägergraph tder Punkte ${\cal C}_n$ die Gleichung $y=-2^{x-1}+8$ besitzt.

Zeichnen Sie den Trägergraphen t der Punkte C_n in das Koordinatensystem zu 1.2 ein. [Teilergebnis: C_n ($\log_2(x+8)+1|-x$)]

Lösung zu Aufgabe B1.4

Trägergraphen / Ortskurve bestimmen

$$A_n(x|\log_2(x+8))$$

Die Punkte C_n entstehen durch Drehung der Punkte A_n um $\varphi = -90^{\circ}$ (Drehwinkel ist negativ, da die Drehrichtung im Uhrzeigersinn ist) um den Punkt B(0|0).

Drehmatrix aufstellen:

$$D = \begin{pmatrix} \cos(-90^{\circ}) & -\sin(-90^{\circ}) \\ \sin(-90^{\circ}) & \cos(-90^{\circ}) \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Koordinaten der Punkte C_n bestimmen:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \circ \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \circ \begin{pmatrix} x \\ \log_2(x+8) + 1 \end{pmatrix}$$
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \log_2(x+8) + 1 \\ -x \end{pmatrix}$$

$$\Rightarrow$$
 $C_n(\log_2(8+x)+1|-x)$

Funktion t des Trägergraphen bestimmen:

Erläuterung: Trägergraphen

Der Trägergraph besteht aus allen möglichen Punkten C_n , die durch die Drehung entstehen können

Man stellt sich dies als Bewegung vor bei der der Punkt C_n betrachtet wird.

 $x'' = \log_2(x+8) + 1$ nach x auflösen:

$$x'' = \log_2(x+8) + 1 \qquad | \qquad -1$$

$$x'' - 1 = \log_2(x + 8)$$
 entlogarithmieren

$$2^{x''-1} = 2^{\log_2(x+8)}$$

$$2^{x''-1} = x + 8$$
 | -8

$$x = 2^{x''-1} - 8$$

$$x = 2^{x''-1} - 8$$
 einsetzen in y'' :

$$y'' = -x = -(2^{x''-1} - 8) = -2^{x''-1} + 8$$

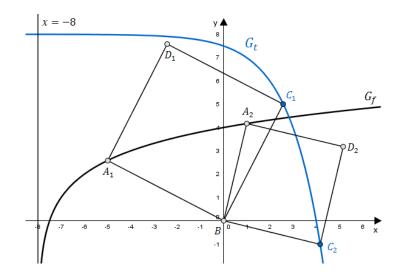
$$\Rightarrow \quad t: y = -2^{x-1} + 8$$

Skizze

Wertetabelle anfertigen:

x	-2	0	93
$y = -2^{x-1} + 8$	7,88	7,5	4

Trägergraph t in das Koordinatensystem zu 1.2 einzeichnen:



Aufgabe B1.5 (2 Punkte)

Für das Quadrat $A_3 B C_3 D_3$ gilt: $A_3(-4|3)$. Berechnen Sie die Koordinaten des Punktes D_3 .

Lösung zu Aufgabe B1.5

Lage eines Punktes

 $C_n(\log_2(x+8)+1|-x)$ (Teilergebnis von Aufgabe B 1.4)

 $A_3(-4|3)$

Der Punkt A_3 hat die x-Koordinate -4.

Koordinaten des Punktes C_3 bestimmen:

$$C_3(\log_2(-4+8)+1|-(-4)) = (\log_2(4)+1|4) = (3|4)$$

Koordinaten des Punktes D_3 bestimmen:

$$\overrightarrow{D_3} = \overrightarrow{A_3} + \overrightarrow{C_3}$$

$$\overrightarrow{D_3} = \begin{pmatrix} -4 \\ 3 \end{pmatrix} + \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ 7 \end{pmatrix}$$

$$\Rightarrow D_3(-1|7)$$

Aufgabe B1.6 (3 Punkte)

Für das Quadra
t $A_4\,B\,C_4\,D_4\,$ gilt: Der Punkt $\,D_4\,$ liegt auf der Winkelhalbierenden des II. Quadranten.

Ermitteln Sie rechnerisch die x-Koordinate des Punktes A_4 .

Lösung zu Aufgabe B1.6

Lage eines Punktes

 D_4 liegt auf der Winkelhalbierenden des II. Quadranten.

Da der Punkt B im Ursprung und der Punkt D_4 auf der Winkelhalbierenden des II. Quadranten liegt, folgt:

Der Punkt A_4 liegt auf der x-Achse. Seine y-Koordinate ist somit gleich Null.

$$\Rightarrow A_4(x|0)$$

Für alle Punkte A_n gilt: $A_n(x|\log_2(x+8)+1)$

Für den Punkt A_4 gilt also:

$$\log_2(x+8) + 1 = 0 \qquad | \qquad -1$$

 $\log_2(x+8) = -1$ entlogarithmieren

Erläuterung: Entlogarithmieren

Der Logarithmus \log_2 kann durch die Exponentialfunktion 2^x aufgehoben werden.

Beispiel:
$$\log_2 x = 3$$
 \iff $2^{\log_2 x} = 2^3$ \iff $x = 8$

$2^{\log_2(x+8)} = 2^{-1}$

$$x + 8 = 2^{-1}$$
 | -8

$$x = 2^{-1} - 8$$

$$\Rightarrow x = -7, 5$$