Mittlere-Reife-Prüfung 2017 Mathematik I Aufgabe A1

Aufgabe A1.

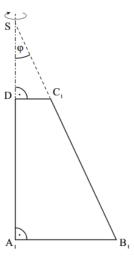
Trapeze $A_n B_n C_n D$ mit den parallelen Seiten $[D C_n]$ und $[A_n B_n]$ rotieren um die Gerade S D.

Es gilt:

 $A_n \in SD$; $\overline{SD} = 3$ cm; $\overline{A_n B_n} = 4$ cm; $\angle B_n A_n D = 90^\circ$.

Die Winkel DSC_n haben das Maß φ mit $\varphi \in]0^\circ; 53, 13^\circ[$.

Die Zeichnung zeigt das Trapez $A_1 B_1 C_1 D$ für $\varphi = 25^{\circ}$.



Aufgabe A1.1 (1 Punkt)

Zeichnen Sie in die Zeichnung zu A 1.0 das Trapez $A_2\,B_2\,C_2\,D$ für $\varphi=40^\circ$ ein.

Aufgabe A1.2 (2 Punkte)

Zeigen Sie durch Rechnung, dass für die Längen der Strecken $[D\,C_n]$ und $[S\,A_n]$ in Abhängigkeit von φ gilt:

$$\overline{DC_n}(\varphi) = 3 \cdot \tan \varphi \text{ cm und } \overline{SA_n}(\varphi) = \frac{4}{\tan \varphi} \text{ cm.}$$

Aufgabe A1.3 (2 Punkte)

Bestätigen Sie rechnerisch, dass für das Volumen V der entstehenden Rotationskörper in Abhängigkeit von φ gilt: $V(\varphi) = \frac{1}{3} \cdot \pi \cdot \left(\frac{64}{\tan \varphi} - 27 \cdot \tan^2 \varphi\right) \text{ cm}^3$.

Lösung

Aufgabe A1.

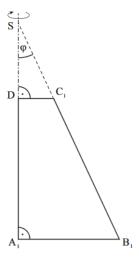
Trapeze $A_n B_n C_n D$ mit den parallelen Seiten $[D C_n]$ und $[A_n B_n]$ rotieren um die Gerade S D.

Es gilt:

$$A_n \in SD$$
; $\overline{SD} = 3$ cm; $\overline{A_n B_n} = 4$ cm; $\angle B_n A_n D = 90^\circ$.

Die Winkel DSC_n haben das Maß φ mit $\varphi \in]0^\circ; 53, 13^\circ[$.

Die Zeichnung zeigt das Trapez $A_1 B_1 C_1 D$ für $\varphi = 25^{\circ}$.

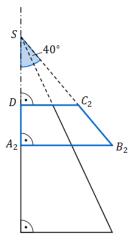


Aufgabe A1.1 (1 Punkte)

Zeichnen Sie in die Zeichnung zu A 1.0 das Trapez $A_2\,B_2\,C_2\,D$ für $\varphi=40^\circ$ ein.

Lösung zu Aufgabe A1.1

Skizze



Erläuterung: Einzeichnen

Zeichnen des Trapezes $A_2 B_2 C_2 D$:

- 1) Antragen des Winkels $\varphi = 40^{\circ}$ an der Strecke [S D]
- 2) Antragen der Strecke $[A_2 B_2]$ mit $\overline{A_2 B_2} = 4$ cm
- 3) Verlängern der Strecke $[D\,C_1]$ bis man auf den Schenkel des Winkel φ trifft

Aufgabe A1.2 (2 Punkte)

Zeigen Sie durch Rechnung, dass für die Längen der Strecken $[D\,C_n]$ und $[S\,A_n]$ in Abhängigkeit von φ gilt:

$$\overline{DC_n}(\varphi) = 3 \cdot \tan \varphi \text{ cm und } \overline{SA_n}(\varphi) = \frac{4}{\tan \varphi} \text{ cm.}$$

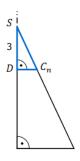
Lösung zu Aufgabe A1.2

Länge einer Strecke

Gegeben: $\overline{SD} = 3 \text{ cm}$; $\overline{A_n B_n} = 4 \text{ cm}$

Gesucht: $\overline{DC_n}$ und $\overline{SA_n}$

Man betrachte die rechtwinkligen Dreiecke SDC_n :



Erläuterung: Tangens eines Winkels

Der Tangens eines Winkels α ist ein Seitenverhältnis. $\tan \alpha = \frac{\text{Gegenkathete zu } \alpha}{\Delta \alpha \ln \alpha}$

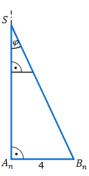
Ankathete zu α

Gilt nur in rechtwinkligen Dreiecken.

$$\tan \varphi = \frac{\overline{DC_n}}{3} \quad | \cdot 3$$

$$3 \cdot \tan \varphi = \overline{D \, C_n}$$

Nun betrachte man die rechtwinkligen Dreiecke $S A_n B_n$.



Erläuterung:

Der Tangens eines Winkels α ist ein Seitenverhältnis. $\tan\alpha = \frac{\text{Gegenkathete zu }\alpha}{\text{Ankathete zu }\alpha}$

$$\tan \alpha = \frac{\text{Gegenkathete zu } \alpha}{\Delta}$$

Gilt nur in rechtwinkligen Dreiecken.

$$\tan \varphi = \frac{4}{\overline{S A_n}} \qquad | \cdot \overline{S A_n}$$

$$\tan \varphi \cdot \overline{S A_n} = 4 \qquad | : \tan \varphi$$

$$\overline{S A_n} = \frac{4}{\tan \varphi}$$

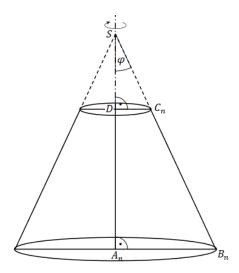
Aufgabe A1.3 (2 Punkte)

Bestätigen Sie rechnerisch, dass für das Volumen V der entstehenden Rotationskörper in Abhängigkeit von φ gilt: $V\left(\varphi\right)=\frac{1}{3}\cdot\pi\cdot\left(\frac{64}{\tan\varphi}-27\cdot\tan^{2}\varphi\right)\ \mathrm{cm}^{3}.$

Lösung zu Aufgabe A1.3

Volumen des Rotationskörpers ermitteln

Die Rotation des Trapezes lässt einen kleinen und einen großen Kegel entstehen:



Berechnung der Volumina der beiden Kegel:

Erläuterung: Volumen eines Kegels

Ein Kegel mit Radius r und Höhe h, hat ein Volumen von:

$$V = \frac{1}{3} \cdot r^2 \cdot \pi \cdot h$$

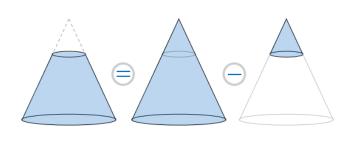
$$\begin{split} V_{\text{gr. Kegel}} &= \frac{1}{3} \cdot \pi \cdot r^2 \cdot h \\ V_{\text{gr. Kegel}} &= \frac{1}{3} \cdot \pi \cdot \overline{A_n \, B_n}^2 \cdot \overline{S \, A_n} \end{split}$$

$$V_{\rm gr.~Kegel} = \frac{1}{3} \cdot \pi \cdot 4^2 \cdot \frac{4}{\tan \varphi}$$

$$\begin{split} V_{\text{kl. Kegel}} &= \frac{1}{3} \cdot \pi \cdot r^2 \cdot h \\ V_{\text{kl. Kegel}} &= \frac{1}{3} \cdot \pi \cdot \overline{D \, C_n}^2 \cdot \overline{S \, D} \\ V_{\text{kl. Kegel}} &= \frac{1}{3} \cdot \pi \cdot (3 \cdot \tan \varphi)^2 \cdot 3 \end{split}$$

Erläuterung: Volumen eines Körpers

Das Volumen des gesuchten Körpers entsteht, indem das Volumen des kleinen Kegels vom Volumen des großen Kegels abgezogen wird.



$$\begin{split} &V_{\text{Rotationsk\"orper}} = V_{\text{gr. Kegel}} - V_{\text{kl. Kegel}} \\ &V_{\text{Rotationsk\"orper}} = \frac{1}{3} \cdot \pi \cdot 4^2 \cdot \frac{4}{\tan \varphi} - \frac{1}{3} \cdot \pi \cdot (3 \cdot \tan \varphi)^2 \cdot 3 \\ &V_{\text{Rotationsk\"orper}} = \frac{1}{3} \cdot \pi \cdot 16 \cdot \frac{4}{\tan \varphi} - \frac{1}{3} \cdot \pi \cdot 9 \cdot \tan^2 \varphi \cdot 3 \\ &V_{\text{Rotationsk\"orper}} = \frac{1}{3} \cdot \pi \cdot \frac{64}{\tan \varphi} - \frac{1}{3} \cdot \pi \cdot 27 \cdot \tan^2 \varphi \\ &V_{\text{Rotationsk\"orper}} = \frac{1}{3} \cdot \pi \cdot \left(\frac{64}{\tan \varphi} - 27 \cdot \tan^2 \varphi \right) \text{ cm}^2 \end{split}$$