Abschlussprüfung 2000 an den Realschulen in Bayern

Mathematik I Aufgabengruppe A

- 3.0 Das Quadrat ABCD mit 10 cm langen Diagonalen ist die Grundfläche einer Pyramide ABCDS, deren Spitze S senkrecht über dem Diagonalenschnittpunkt M des Quadrats ABCD liegt. Das Maß des Winkels CAS beträgt 60°.
- 3.1 Zeichnen Sie ein Schrägbild der Pyramide ABCDS. Dabei soll die Diagonale [AC] auf der Schrägbildachse liegen.

Für die Zeichnung: $q = \frac{1}{2}$; $\omega = 45^{\circ}$

- 3.2 Zur Grundfläche ABCD parallele Ebenen schneiden die Pyramidenkanten [AS] in E_n , [BS] in F_n , [CS] in G_n und [DS] in H_n . Der Punkt M ist die Spitze von neuen Pyramiden $E_nF_nG_nH_nM$. Die Winkel E_nMA haben das Maß ϕ mit $0^\circ < \phi < 90^\circ$. Zeichnen Sie die Pyramide $E_1F_1G_1H_1M$ für $\phi = 70^\circ$ in das Schrägbild zu 2. 1 ein.
- 3.3 Ermitteln Sie rechnerisch die Länge $\overline{E_nM}(\phi)$ der Pyramidenkanten $[E_nM]$ in Abhängigkeit von ϕ .

[Ergebnis:
$$\overline{E}_n M(\phi) = \frac{2.5 \cdot \sqrt{3}}{\sin(60^\circ + \phi)} \text{ cm}$$
]

- 3.4 Bei der Pyramide $E_2F_2G_2H_2M$ gilt: $\overline{E_2M} = \frac{3}{4}\cdot\overline{AS}$. Berechnen Sie das zugehörige Winkelmaß ϕ auf zwei Stellen nach dem Komma gerundet.
- Zeigen Sie rechnerisch, dass für die Diagonalenlänge $\overline{E_n G_n}(\phi)$ in Abhängigkeit von ϕ gilt: $\overline{E_n G_n}(\phi) = \frac{5\sqrt{3} \cdot \cos \phi}{\sin(60^\circ + \phi)} \, \text{cm}.$
- 3.6 Die Grundfläche $E_3F_3G_3H_3$ der Pyramide $E_3F_3G_3H_3M$ ist um 80% kleiner als die Grundfläche ABCD der Pyramide ABCDS. Berechnen Sie das zugehörige Winkelmaß ϕ . (Auf zwei Stellen nach dem Komma runden.) [Teilergebnis: $\overline{E_3G_3} = 4,47$ cm]